

 MCU Experiment Report

Taxi Fare Meter

Faculty School of Design

Professional Product Design

Student's Name Huang Zejun

Student ID 202130670058

Instructor Zhu Yanzhao

Start Date 2025.2.28-2025.4.6

I. Design Requirements

(1) Design a schematic diagram in Proteus that displays distance, speed, and total fare

in real time.

(2) Use a single button to control the billing process: press to start billing, and release

to stop billing and display the current distance and fare.

(3) Simulate taxi wheel signals using a signal generator.

(4) Submit the lab report and project files. A final evaluation will be conducted through

a one-on-one defense with the instructor.

(5) Assume the circumference of the taxi tire is 1.83 meters. The fare is calculated as

follows: ¥8 for the first 2 kilometers, and ¥2.6 per additional kilometer. Other charges

are not considered.

(6) The program must be written in assembly language; C language is not allowed.

(7) The lab report must clearly explain the algorithm and describe the meaning and use

of each memory variable.

(8) Carefully watch the reference video provided, and ensure your final result achieves

the same functionality and appearance as shown in the video.

II. Design Overview

This project implements a simplified taxi fare meter based on the AT89C52

microcontroller. The system utilizes timer interrupts and external interrupts to

respectively handle time-based counting and wheel pulse detection, enabling real-time

calculation and 7-segment display of distance traveled, current speed, and total fare.

The overall architecture follows an “interrupt + main loop” structure. In the

MAIN routine, buffer registers such as cache and count are first initialized, and Timer

1 is configured in Mode 1 (16-bit timer mode) with an initial value that generates an

interrupt every 5ms. External interrupt 0 (INT0) is enabled to receive simulated

wheel signals. Once started, the system enters a main loop that continuously responds

to interrupts and processes data.

Each INT0 external interrupt corresponds to one full wheel rotation and

increments the pulse counter. In the interrupt service routine (INT0_HANDLER), a

flag TR_FLAG is also set to notify the main loop that new data is available for

processing.

Timer 1 generates an interrupt every 5ms. Once it triggers 200 times (i.e., one

second), the main loop calls CALC_SPEED to compute the current speed, and resets

both cache and count to prepare for the next second.

In the main loop, if TR_FLAG is set, the system calls UPDATE_PATH to

accumulate distance and UPDATE_PRICE to update the fare. Every second,

CALC_SPEED is called to compute the real-time speed based on pulse count, which

is then converted to BCD format for display.

All display data—including fare, kilometers, and speed—is stored in BCD

format. The CONVERT_BCD routine separates each byte into individual digits and

stores them in cDisplayBuffer. The Display routine then scans through 12 digits,

looks up corresponding segment codes from DisplayTable, and drives the 7-segment

display dynamically.

2.1 Speed

Speed is calculated based on the number of pulses received within a 1-second

interval. Timer 1 generates an interrupt every 5ms, and a counter accumulates until

200 ticks indicate one second has passed. At that point, the main loop calls

CALC_SPEED.

The theoretical formula used is: Speed = pulses × 1.83m × 3600s / 1000m =

pulses × 6.588 (km/h)

Since this value can easily overflow standard registers, a fixed-point

approximation is used. For instance, 100 pulses should yield 658.8 km/h. To simulate

this in assembly without floating-point support, the value is approximated by splitting

6.588 into two factors: Speed ≈ pulses × 227 (E3H) + pulses × 65 (41H)

This is implemented via two successive multiplications in the program. The final

binary result is stored in result, then converted to BCD using the BinDec routine for

display.

2.2 Distance Calculation

Distance is calculated by counting wheel pulses via external interrupt INT0. Each

pulse represents one full wheel rotation. In the interrupt service routine, the pulse

count (cache) is incremented and TR_FLAG is set to notify the main loop.

The main loop detects the flag and calls UPDATE_PATH, which adds the

equivalent distance of 1.83 meters per pulse to the BCD-based memory cells BCD+2

and BCD+3. Proper BCD carry operations and DA (Decimal Adjust) instructions

ensure correctness. The final kilometer value is stored in the BCD region for display.

2.3 Fare Calculation

Fare is calculated based on the distance, with a base rate and tiered pricing. If the

total distance is under 2 kilometers, the fare is fixed at ¥8. If the distance exceeds 2

kilometers, each additional increment (approximately 0.00183 km per pulse) is charged

at ¥2.6 per kilometer.

This logic is handled in the UPDATE_PRICE routine. Similar to distance

accumulation, intermediate results are temporarily stored in cache+3 and cache+4, and

then carried into the BCD area representing the fare (BCD, BCD+1) using BCD-

compliant addition and adjustment. This allows the fare to be dynamically and

accurately updated for display.

III. Screenshot of the work

(1) Press the button to start billing

(2) Set the frequency to 10 and the speed will be displayed as 65.8

(3) Set the frequency to above 100 and quickly increase the mileage

(4) Release the button, stop billing, display current mileage and amount

IV. Code

ORG 0000H
SJMP MAIN
ORG 0003H
LJMP INT0_HANDLER
ORG 001BH
LJMP TIMER1_ISR

cDisplayBit EQU 2CH
count EQU 2DH
cache EQU 2EH

bcd EQU 40H
bcdBuf EQU 46H
result EQU 49H

cDisplayBuffer EQU 50H
TR_FLAG BIT 00H
MARK BIT 01H

MAIN:
 MOV cache,#00H
 MOV count,#00H
 MOV TMOD,#10H
 MOV TH1,#0DCH
 MOV TL1,#00H
 SETB EA
 SETB IT0
 SETB EX0
 SETB ET1
 SETB TR1
 LCALL CCLR
M1:
 JNB TR_FLAG,M2
 LCALL UPDATE_PATH
 LCALL UPDATE_PRICE
 CLR TR_FLAG
M2:
 LCALL SHOW
 MOV A,count
 XRL A,#200
 JNZ M1

 LCALL CALC_SPEED
 MOV count,#0
 MOV cache,#0
 SJMP M1

INT0_HANDLER:
 JB P3.7,RESET_MARK
 JB MARK,HANDLE_PULSE
 LCALL CCLR
 SETB MARK
HANDLE_PULSE:
 INC cache
 SETB TR_FLAG
 RETI
RESET_MARK:
 CLR MARK
 RETI

CCLR:
 MOV R1,#60H
 MOV R0,#20H
C1:
 MOV @R0,#00H
 INC R0
 DJNZ R1,C1
 RET

TIMER1_ISR:
 MOV TH1,#0DCH
 MOV TL1,#00H
 INC count
 RETI

CALC_SPEED:
 MOV A,cache
 MOV B,#0E3H
 MUL AB
 MOV result+1,B
 MOV B,#41H
 MOV A,cache
 MUL AB
 ADD A,result+1
 MOV result+1,A
 MOV A,B

 ADDC A,#0
 MOV result,A
 MOV R0,#result
 MOV R1,#bcdBuf
 LCALL BinDec
 MOV bcd+5,bcdBuf+2
 MOV bcd+4,bcdBuf+1
 RET

BinDec:
 CLR A
 MOV @R1,A
 INC R1
 MOV @R1,A
 INC R1
 MOV @R1,A
 PUSH 7
 MOV R7,#16
BD1:
 CLR C
 INC R0
 MOV A,@R0
 RLC A
 MOV @R0,A
 DEC R0
 MOV A,@R0
 RLC A
 MOV @R0,A
 PUSH 1
 MOV A,@R1
 ADDC A,@R1
 DA A
 MOV @R1,A
 DEC R1
 MOV A,@R1
 ADDC A,@R1
 DA A
 MOV @R1,A
 DEC R1
 MOV A,@R1
 ADDC A,@R1
 DA A
 MOV @R1,A
 POP 1

 DJNZ R7,BD1
 POP 7
 RET

UPDATE_PATH:
 CLR C
 MOV A,#30H
 ADDC A,cache+2
 DA A
 MOV cache+2,A
 MOV A,#18H
 ADDC A,cache+1
 DA A
 MOV cache+1,A
 MOV A,bcd+3
 ADDC A,#0
 DA A
 MOV bcd+3,A
 MOV A,bcd+2
 ADDC A,#0
 DA A
 MOV bcd+2,A
 RET

UPDATE_PRICE:
 MOV A,bcd+2
 CLR C
 SUBB A,#02H
 JC BASE_PRICE
 MOV A,#58H
 ADD A,cache+4
 DA A
 MOV cache+4,A
 MOV A,#47H
 ADDC A,cache+3
 DA A
 MOV cache+3,A
 MOV A,#00H
 ADDC A,bcd+1
 DA A
 MOV bcd+1,A
 MOV A,#00H
 ADDC A,bcd
 DA A

 MOV bcd,A
 RET
BASE_PRICE:
 MOV bcd,#08H
 RET

SHOW:
 LCALL CONVERT_BCD
 LCALL Display
 RET

CONVERT_BCD:
 MOV R5,#06H
 MOV R0,#bcd
 MOV R1,#cDisplayBuffer
BCD_SPLIT:
 MOV A,@R0
 ANL A,#0F0H
 SWAP A
 MOV @R1,A
 INC R1
 MOV A,@R0
 ANL A,#0FH
 MOV @R1,A
 INC R0
 INC R1
 DJNZ R5,BCD_SPLIT
 RET

DisplayTable: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH

Display:
 MOV R5,#0CH
D1:
 LCALL Delay
 MOV A,cDisplayBit
 MOV P2,A
 MOV DPTR,#DisplayTable
 MOV A,#cDisplayBuffer
 ADD A,cDisplayBit
 MOV R0,A
 MOV A,@R0
 MOVC A,@A+DPTR
 MOV P1,A

 INC cDisplayBit
 DJNZ R5,D1
 MOV cDisplayBit,#00H
D2:
 LCALL Delay
 MOV P2,#01H
 MOV P1,#80H
 LCALL Delay
 MOV P2,#05H
 MOV P1,#80H
 LCALL Delay
 MOV P2,#0AH
 MOV P1,#80H
 RET

Delay:
 MOV R0,#10
 MOV R1,#10
 DJNZ R1,$
 DJNZ R0,$-4
 RET

END

